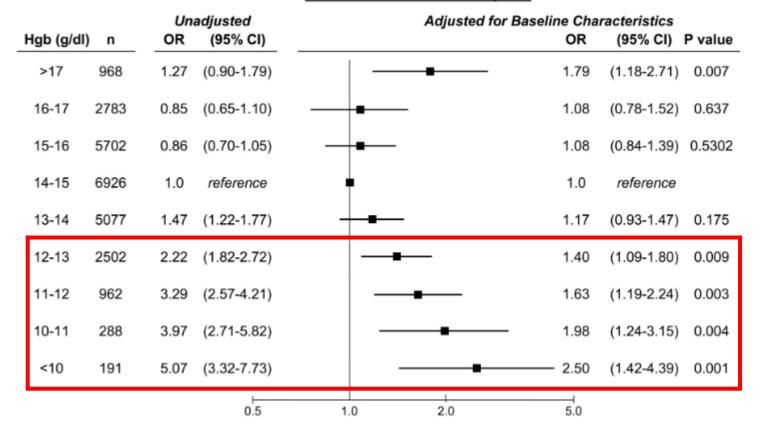

Liberal vs. Restrictive Strategies: Strategies in MI


Junho Hyun Clinical Assistant Professor Ulsan College of Medicine

Asan Medical Center

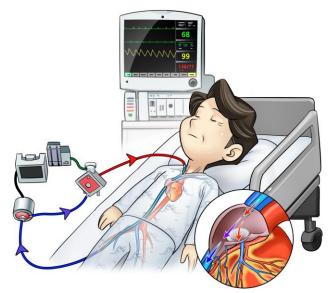
Prevalence and Impact of Anemia in AMI

OR & 95% CI for CV Death by 30 d

Observed Impact of RBC Transfusion in AMI

US national inpatient sample (NIS) selected by diagnostic code

Effect of RBC transfusion on inpatient adverse events, mortality and resource utilization (n = 254,816).


	RBC transfusion			
	No	Yes	p-value	
	(n = 208,171)	(n = 46,645)		
Length of stay (days), mean			<	
(SD)	7.37 (7.62)	10.69 (8.91)	0.001	
			<	
Total cost (\$), mean (SD)	31,400 (35,973)	44,100 (38,886)	0.001	
	134,212	187,519	<	
Total charge (\$), mean (SD)	(170,286)	(189,898)	0.001	
Adverse Events, n (%)				
			<	
Any	111,586 (53.6)	29,112 (62.4)	0.001	
			<	
Acute kidney injury	69,939 (33.6)	19,765 (42.4)	0.001	
			<	
Cardiac arrest	8688 (4.2)	2437 (5.2)	0.001	
			<	
Cardiogenic shock	16,472 (7.9)	4506 (9.7)	0.001	
			<	
Hemorrhagic stroke	300 (0.1)	76 (0.2)	0.001	
Took out out of the	0001 (1.0)	11(0(05)	<	
Ischemic stroke	3901 (1.9)	1163 (2.5)	0.001	
TTA	000 (0.4)	007 (0.5)	< 0.001	
TIA	882 (0.4)	227 (0.5)	0.001	
Acute heart failure	62 060 (20 7)	16 210 (25 0)	< 0.001	
Acute neart failure	63,960 (30.7)	16,310 (35.0)		
Mortality, n (%)	14,261 (6.9)	3941(8.4)	< 0.001	
Mortality, II (70)	14,201 (0.9)	3741(0.4)	0.001	

Possible **reverse causality** due to disease severity and patient's clinical condition

VS.

Simple AMI and PCI

AMI requiring ECMO and CABG

- Pneumonia combined with ABx use
- Numerous additional medications
- · Bleeding, ...

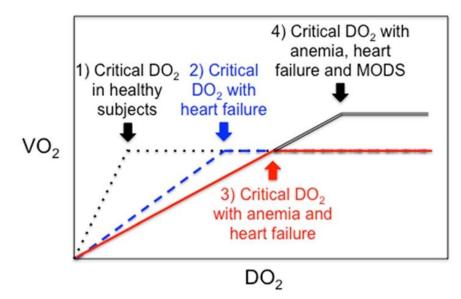
Mechanistic Aspects: Pros

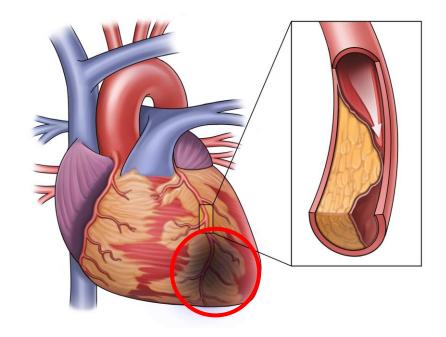
DO2 (oxygen delivery) = Q (cardiac output) X CaO2 (arterial oxygen concentration)

Anemia patients

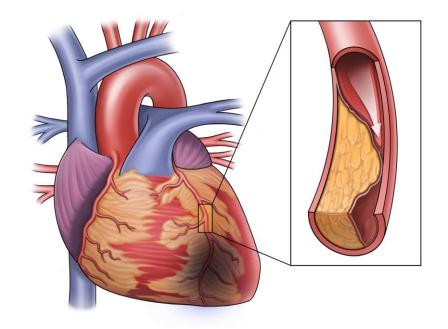
compensatory increase in CO

Hb drops

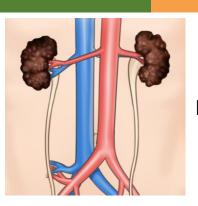

AMI + anemia



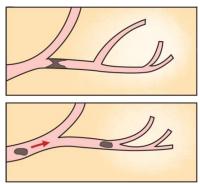
decrease in CO



Hb drops



Mechanistic Aspects: Cons

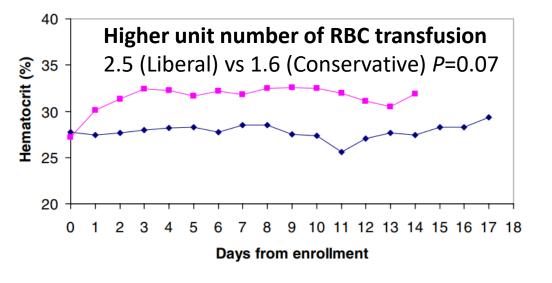


Volume overload

Kidney, lung injury

Thrombosis due to increased viscosity

More transfusion needed, higher cost


Early Prospective Randomized Pilot Trials

Conservative Versus Liberal Red Cell Transfusion in Acute Myocardial Infarction (the CRIT Randomized Pilot Study)

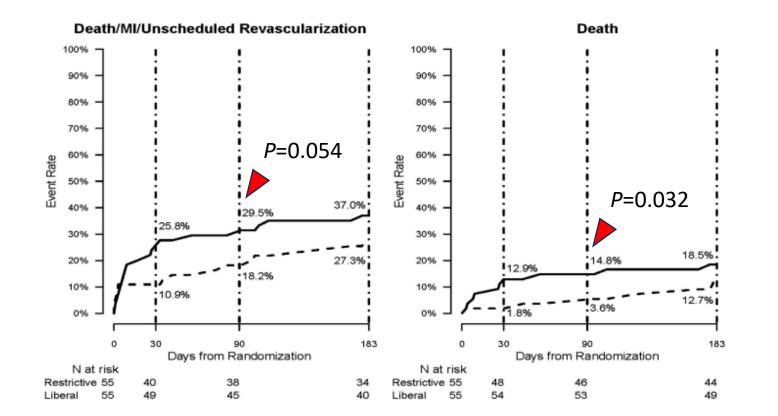
Howard A. Cooper, MD^{a,*}, Sunil V. Rao, MD^b, Michael D. Greenberg, MD^c, Maria P. Rumsey, MD^a, Marcus McKenzie, MD^a, Kirsten W. Alcorn, MD^a, and Julio A. Panza, MD^a

Liberal: HCT target 30%

Conservative: HCT target 24%

	Liberal (N=21)	Conservative (N=24)	Р
In-hospital death, recurrent MI, HF	38%	13%	0.046
In-hospital death	5%	8%	1.0
HF	38%	8%	

Early Prospective Randomized Pilot Trials


Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease

Jeffrey L. Carson, MD, ^a Maria Mori Brooks, PhD, ^b J. Dawn Abbott, MD, ^c Bernard Chaitman, MD, ^d Sheryl F. Kelsey, PhD, ^b Darrell J. Triulzi, MD, ^c Vankeepuram Srinivas, MD, ^f Mark A. Menegus, MD, ^f Oscar C. Marroquin, MD, ^g Sunil V. Rao, MD, ^h Helaine Noveck, MPH, ^a Elizabeth Passano, MS, ^b Regina M. Hardison, MS, ^b Thomas Smitherman, MD, ^g Tudor Vagaonescu, MD, ⁱ Neil J. Wimmer, MD, ^j and David O. Williams, MD, ^j New Brunswick, NJ; Pittsburgh, PA; Providence, RI; Saint Louis, MO; New York, NY; Durham, NC; and Boston, MA

Liberal: Hb target 10 g/dL Restrictive: Hb target 8 g/dL

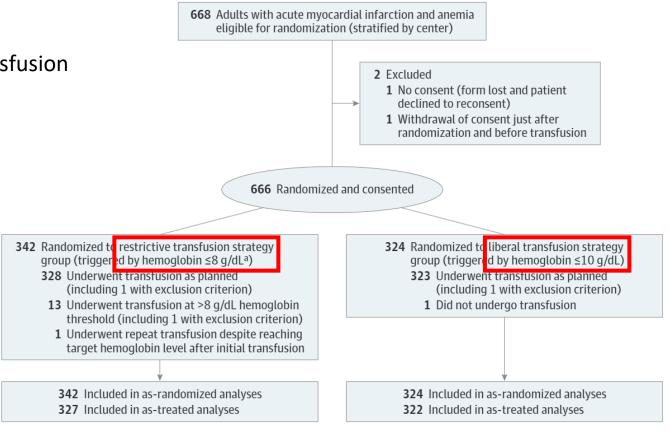
Higher unit number of RBC transfusion

1.6 (Liberal) vs 0.6 (Restrictive)

Restrictive

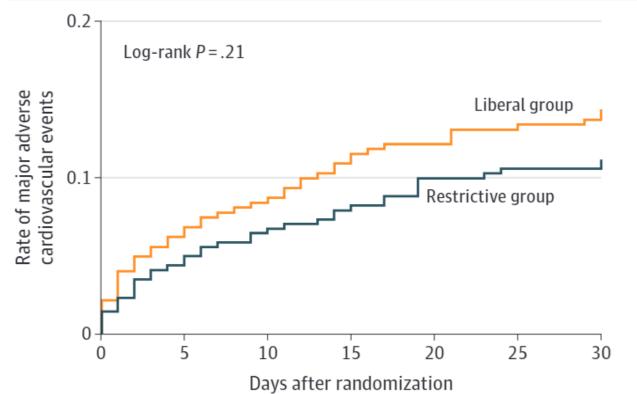
Two Pilot Trials with Conflicting Results

Larger number study with adequate power needed


Non-Inferiority Trial of Restrictive Strategy

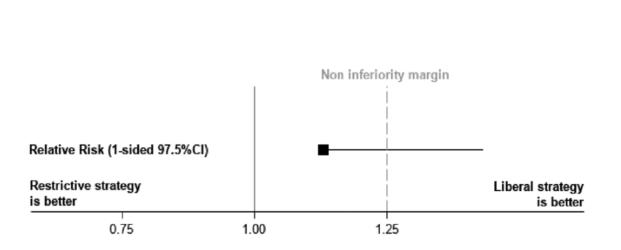
Non-inferiority trial
Restrictive transfusion would be non-inferior to liberal transfusion

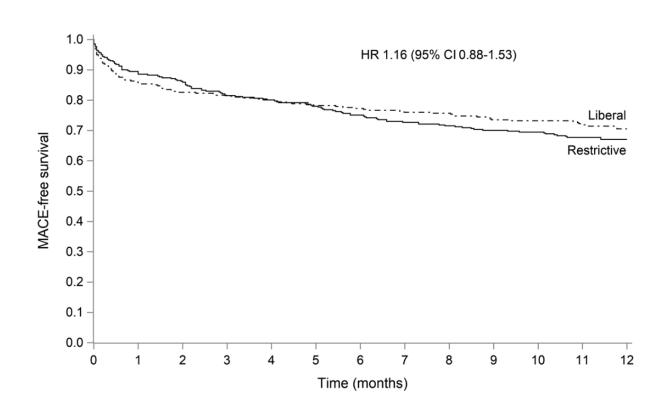
JAMA | Original Investigation


Effect of a Restrictive vs Liberal Blood Transfusion Strategy on Major Cardiovascular Events Among Patients With Acute Myocardial Infarction and Anemia The REALITY Randomized Clinical Trial

Gregory Ducrocq, MD, PhD; Jose R. Gonzalez-Juanatey, MD; Etienne Puymirat, MD; Gilles Lemesle, MD, PhD; Marine Cachanado, MSc; Isabelle Durand-Zaleski, MD, PhD; Joan Albert Arnaiz, MD, PhD; Manuel Martínez-Sellés, MD, PhD; Johanne Silvain, MD, PhD; Albert Ariza-Solé, MD; Emile Ferrari, MD; Gonzalo Calvo, MD, PhD; Nicolas Danchin, MD; Cristina Avendaño-Solá MD; Jerome Frenkiel, MD; Alexandra Rousseau, PhD; Eric Vicaut, MD, PhD; Tabassome Simon, MD, PhD; Philippe Gabriel Steg, MD; for the REALITY Investigators

Restrictive Strategy Can Be Non-Inferior, But...

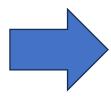

	No. (%)		Difference	Relative risk	
Outcome	Restrictive	Liberal	(95% CI), %	(1-sided 97.5% CI)	
Primary (major adverse cardiovascular events), No./total No. (%) [95% CI] ^a					
As-treated population	36/327 (11.0) [7.5 to 14.6]	45/322 (14.0) [10.0 to 17.9]	-3.0 (-8.4 to 2.4)	0.79 (0.00 to 1.19)	



	No. (%)		
Adverse event	Restrictive (n = 342)	Liberal (n = 324)	
At least 1 adverse event	40 (11.7)	36 (11.1)	
Acute kidney injury ^a	33 (9.7)	23 (7.1)	
Acute heart failure ^b	11 (3.2)	12 (3.7)	
Severe allergic reaction ^a	3 (0.9)	0	
Acute lung injury/ARDS ^a	1 (0.3)	7 (2.2) P=0.03	
Multiorgan system dysfunction ^a	1 (0.3)	3 (0.9)	
Infection ^{a,c}	0	5 (1.5) P=0.03	

>\$39,000 cost-saving with restrictive strategy per additional MACE

Prespecified One-Year Extension of The REALITY Trial



Potential harmful signal with restrictive transfusion strategy in AMI Population

Pilot to Large-Number Randomized Trial

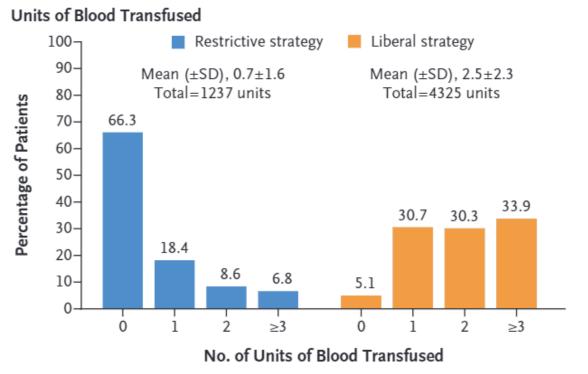
Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease

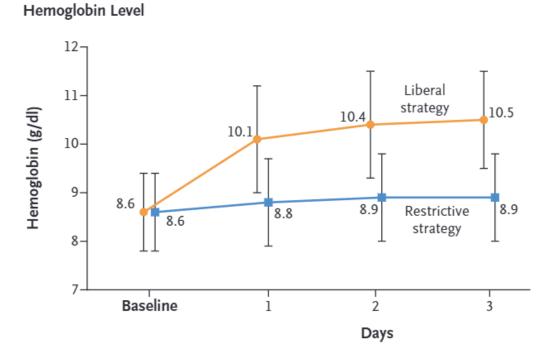
Jeffrey L. Carson, MD, ^a Maria Mori Brooks, PhD, ^b J. Dawn Abbott, MD, ^c Bernard Chaitman, MD, ^d Sheryl F. Kelsey, PhD, ^b Darrell J. Triulzi, MD, ^c Vankeepuram Srinivas, MD, ^f Mark A. Menegus, MD, ^f Oscar C. Marroquin, MD, ^g Sunil V. Rao, MD, ^h Helaine Noveck, MPH, ^a Elizabeth Passano, MS, ^b Regina M. Hardison, MS, ^b Thomas Smitherman, MD, ^g Tudor Vagaonescu, MD, ⁱ Neil J. Wimmer, MD, ^j and David O. Williams, MD, ^j New Brunswick, NJ; Pittsburgh, PA; Providence, RI; Saint Louis, MO; New York, NY; Durbam, NC; and Boston, MA

MINT pilot trial

ORIGINAL ARTICLE

Restrictive or Liberal Transfusion Strategy in Myocardial Infarction and Anemia


J.L. Carson, M.M. Brooks, P.C. Hébert, S.G. Goodman, M. Bertolet, S.A. Glynn, B.R. Chaitman, T. Simon, R.D. Lopes, A.M. Goldsweig, A.P. DeFilippis, J.D. Abbott, B.J. Potter, F.M. Carrier, S.V. Rao, H.A. Cooper, S. Ghafghazi, D.A. Fergusson, W.J. Kostis, H. Noveck, S. Kim, M. Tessalee, G. Ducrocq, P. Gabriel Melo de Barros e Silva, D.J. Triulzi, C. Alsweiler, M.A. Menegus, J.D. Neary, L. Uhl, J.B. Strom, C.B. Fordyce, E. Ferrari, J. Silvain, F.O. Wood, B. Daneault, T.S. Polonsky, M. Senaratne, E. Puymirat, C. Bouleti, B. Lattuca, H.D. White, S.F. Kelsey, P.G. Steg, and J.H. Alexander, for the MINT Investigators*


MINT RCT

MINT Trial Details

AMI patients with Hb <10 g/dL Target Hb in the liberal group (7 g/dL) and the restrictive group (10 g/dL)

3.5 times of transfusion number

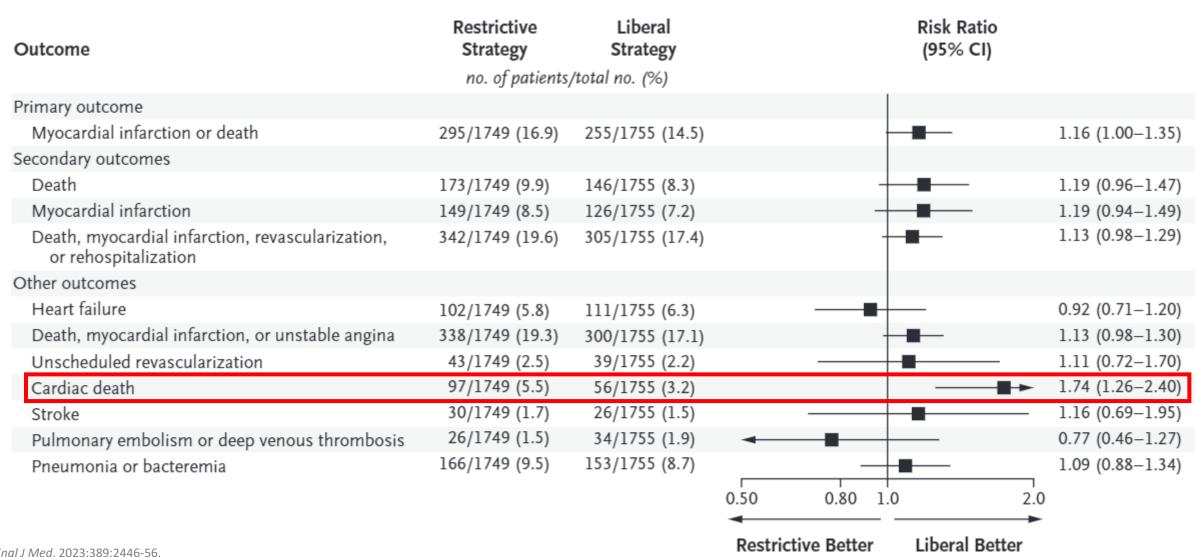
Close Miss in Superiority and No Harmful Signals

A Composite Outcome of Myocardial Infarction or Death

1532

1467

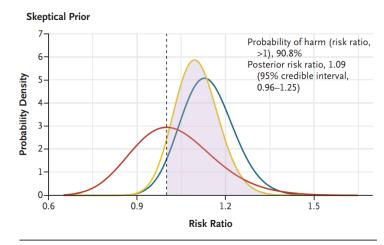
1605

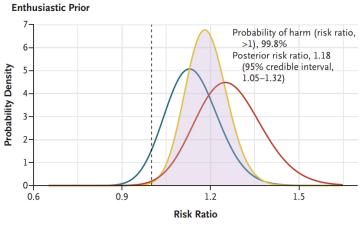

Outcome	Restrictive	Liberal	Relative Risk
Acute respiratory failure	148/1749 (8.5%)	153/1755 (8.7%)	0.97 (0.78,1.20)
Acute renal failure	233/1749 (13.3%)	233/1755 (13.3%)	1.00 (0.85,1.19)
Transfusion Related Adverse Events			
Transfusion related acute lung injury (TRALI)	0/1748 (0.0%)	6/1754 (0.3%)	- ()
Transfusion associated cardiac overload (TACO)	8/1749 (0.5%)	23/1755 (1.3%)	0.35 (0.16,0.78)
Acute hemolytic transfusion reaction	0/1748 (0.0%)	4/1754 (0.2%)	- ()
Transfusion associated sepsis	0/1748 (0.0%)	1/1754 (0.1%)	- ()
Anaphylactic transfusion reaction	2/1748 (0.1%)	2/1754 (0.1%)	1.00 (0.14,7.12)
Urticarial transfusion reaction	0/1748 (0.0%)	2/1754 (0.1%)	- ()
Febrile non-hemolytic transfusion reaction	1/1748 (0.1%)	14/1754 (0.8%)	0.07 (0.01,0.54)

Liberal strategy

1755

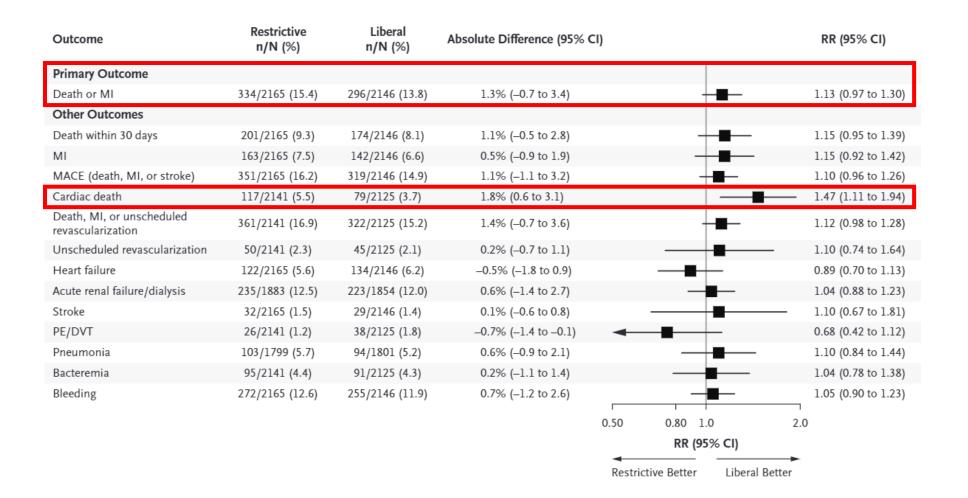
No. at Risk


Potential Increased Risk of Cardiac Death



Significant Findings from Non-Significant Results

patients among the 1749 in the restrictive-strategy group had had a primary-outcome event — or 2 additional patients among the 1755 in the liberal-strategy group had not had a primary-outcome event — the results would have been significant in favor of the liberal transfusion strategy. This information allows us to better understand how fragile the absence of significance was in the analysis of the primary outcome.


Probable harmful effect of restrictive strategy, ranging 90.8% ~ 99.8% based on Bayesian analysis

Meta-Analysis from 4 RCTs

	Trial Name	Restrictive N	Liberal N
Cooper et al. 2011	CRIT†	24	21
Carson et al. 2013	MINT Pilot‡	50	46
Ducrocq et al. 2021	REALITY§	342	324
Carson et al. 2023	MINT¶	1749	1755

No significant benefit with liberal transfusion strategy But, potential benefit regarding cardiac death

MINT Trial Outcomes and Changes in Recommendation

Annals of Internal Medicine

CLINICAL GUIDELINE

Red Cell Transfusion in Acute Myocardial Infarction: AABB International Clinical Practice Guidelines

Monica B. Pagano, MD*; Simon J. Stanworth, MD, DPhil*; Jane Dennis, PhD; Sara Bakhtary, MD; Jeannie Callum, MD; Jeffrey L. Carson, MD; Claudia S. Cohn, MD, PhD; Allan Dubon, MLS; Brenda J. Grossman, MD, MPH; Gaurav K. Gupta, MD, PhD; Aaron S. Hess, MD, PhD; Jessica L. Jacobson, MD; Lewis J. Kaplan, MD; Keyvan Karkouti, MD; Yulia Lin, MD; Ryan A. Metcalf, MD; Lachlan F. Miles, MBBS, PhD; Nicholas L. Mills, MBChB, PhD; Colin H. Murphy, MD; Katerina Pavenski, MD; Micah T. Prochaska, MD; Jay S. Raval, MD; Eric Salazar, MD, PhD; Nabiha H. Saifee, MD, PhD; Kevin Shah, MD; P. Gabriel Steg, MD; Aaron A.R. Tobian, MD, PhD; Cynthia So-Osman, MD, PhD; Timothy Walsh, MD; Jonathan Waters, MD; Erica M. Wood, MD; Nicole D. Zantek, MD, PhD; and Gordon H. Guyatt, MD

Recommendation

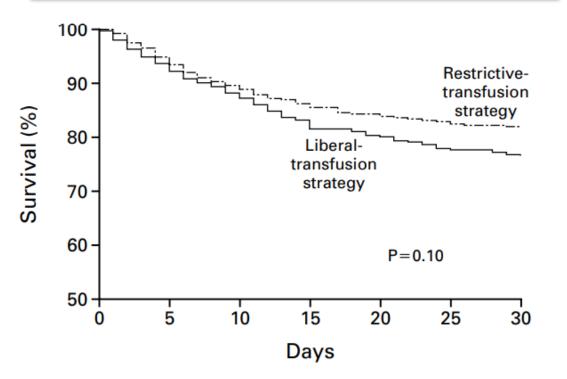
For hospitalized patients with AMI, the international panel suggests RBC transfusion when the Hb is less than 10 g/dL (conditional recommendation, low-certainty evidence).

Good Practice Statement

For hospitalized adult patients with AMI, it is important to incorporate the clinical context (e.g., patients' history, signs, symptoms, hemodynamic status) and patients' preferences when weighing RBC transfusion decisions.

Remark

In accordance with the increased risks of severe adverse events in the liberal transfusion strategy, clinicians should consider strategies for mitigation of adverse transfusion events. Strategies include optimizing fluid status peri-transfusion, slowing transfusion rate, prescribing diuretics, achieving the target Hb more gradually, and transfusing during renal replacement therapy sessions for renal failure.


Interpretation and Perspectives

Restrictive Transfusion as a Universal Criteria

A MULTICENTER, RANDOMIZED, CONTROLLED CLINICAL TRIAL OF TRANSFUSION REQUIREMENTS IN CRITICAL CARE

Paul C. Hébert, M.D., George Wells, Ph.D., Morris A. Blajchman, M.D., John Marshall, M.D., Claudio Martin, M.D., Giuseppe Pagliarello, M.D., Martin Tweeddale, M.D., Ph.D., Irwin Schweitzer, M.Sc., Elizabeth Yetisir, M.Sc., and the Transfusion Requirements in Critical Care Investigators for the Canadian Critical Care Trials Group*

Variable	AABB †	FCC‡	U.K.‡	ESA∫	SCA¶	PCC
		gran	ns of hemoglo	bin per decilite	r	
Hospitalization with hemodynamic stability	7	7	7			
Severe perioperative bleeding				7–9		
Cardiac surgery	7.5	7.5	7		7.5	
Orthopedic surgery	8	8	7			
Previous cardiovascular disease	8	8				
Hematologic or oncologic disorder	7	Insufficient data	7			
Pediatrics	7			7–9		7
Acute myocardial infarction	Insufficient data	Insufficient data	8			
Acute gastrointestinal bleeding		7–8				
Brain injury		Insufficient data				

Hb level of $7.0 \sim 8.0 \text{ g/dL}$

Evidence Gap in Myocardial Infarction

A MULTICENTER, RANDOMIZED, CONTROLLED CLINICAL TRIAL OF TRANSFUSION REQUIREMENTS IN CRITICAL CARE

PAUL C. HÉBERT, M.D., GEORGE WELLS, PH.D., MORRIS A. BLAJCHMAN, M.D., JOHN MARSHALL, M.D., CLAUDIO MARTIN, M.D., GIUSEPPE PAGLIARELLO, M.D., MARTIN TWEEDDALE, M.D., PH.D., IRWIN SCHWEITZER, M.Sc., ELIZABETH YETISIR, M.Sc., AND THE TRANSFUSION REQUIREMENTS IN CRITICAL CARE INVESTIGATORS

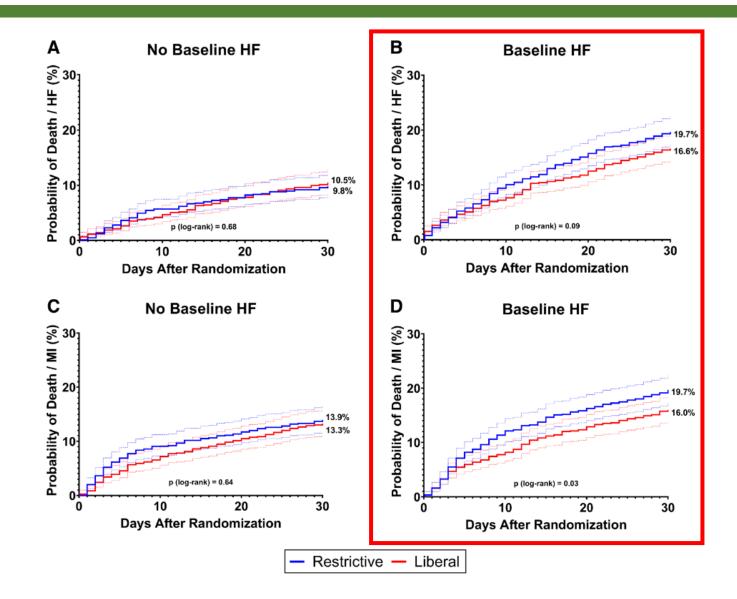
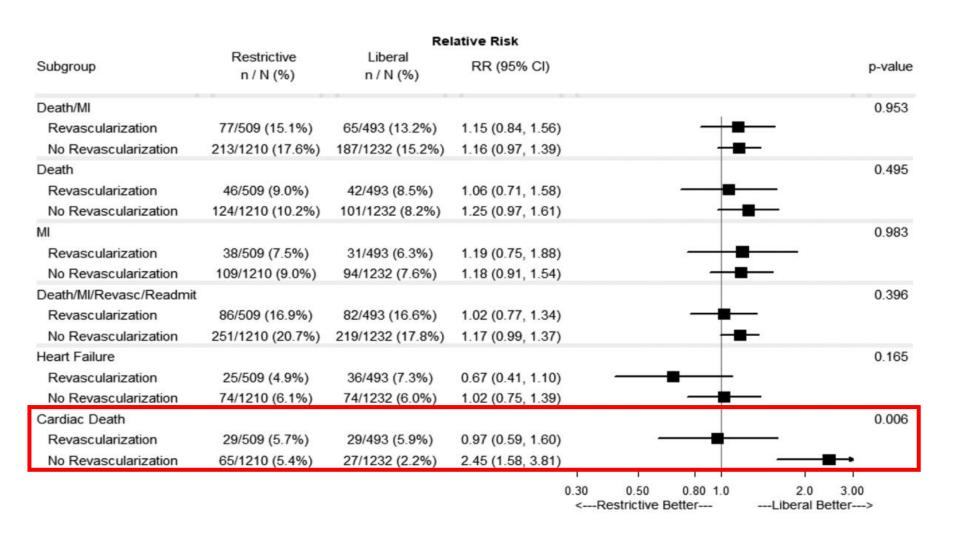
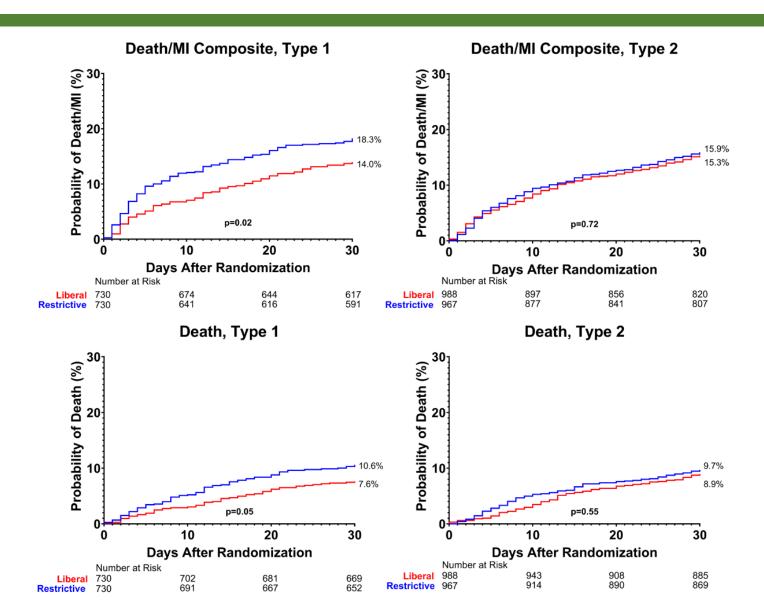

FOR THE CANADIAN CRITICAL CARE TRIALS GROUP*

TABLE 4. CHARACTERISTICS OF THE 176 PATIENTS WHO DIED.*


CHARACTERISTIC	RESTRICTED- TRANSFUSION STRATEGY (N=78)	LIBERAL- TRANSFUSION STRATEGY (N=98)	P Value
Demographic and diagnostic variables			
Age — yr	68.7 ± 12.0	65.9 ± 15.2	0.16
Male sex — no. (%)	48 (62)	58 (59)	0.76
APACHE II score	25.3 ± 7.0	24.6 ± 8.5	0.53
Primary diagnosis at death — no. (%)			0.27
Cardiovascular disease	15 (19)	15 (15)	
Respiratory disease	28 (36)	44 (45)	
Gastrointestinal disease	11 (14)	9 (9)	
Neurologic abnormality	9 (12)	6 (6)	
Other	15 (19)	25 (26)	

The diversity of the patients enrolled in this trial and the consistency of the results suggest that our conclusions may be generalized to most critically ill patients, with the possible exception of patients with active coronary ischemic syndromes


MI Occurring in the Background of HF

MI without Revascularization May Benefit Liberal Strategy

Potential Harmful Signal for Type I Than Type II MI

Summary

Myocardial Infarction

Distinctive disease entity with high importance of oxygen delivery Results from old RCTs cannot apply to this disease entity

Findings from Recent Trials

No significant benefits of liberal transfusion strategy Potential benefits exist

- esp. for type I MI, Pts without revascularization, and baseline history of HF

Individualized Approaches

Rather than unselected liberal transfusion strategy

Incorporating risk of volume overload

Necessitating further strategies mitigating transfusion-related adverse events

